Open Domain-Specific Accelerators: What are they and why should they matter to cloud and network providers?

Presented by: NETRONOME
Today’s Presenters

Moderator
Simon Stanley
Analyst at Large
Heavy Reading

Jim Finnegan
Chief Operating Officer and Senior Vice President of Silicon Engineering Netronome

Mark Kuemerle
Fellow, Integrated Systems Architecture Avera Semiconductor (formerly GLOBALFOUNDRIES ASIC)
Agenda

• Introduction
• Why domain-specific architecture-based silicon
• Open architecture for chiplets-based SoC designs
• Domain-specific accelerator reference architecture
• Technical and business challenges
• Call for industry collaboration
• Q&A
Cloud-based Services Driving Data Growth

• Cloud-based services
 – Content delivery (CDN)
 – Social media, messaging
 – Storage
 – Data Management
 – Big data processing
 – IoT services
• Services hosted in large and hyperscale data centers
• Virtualized infrastructure
 – Based on SDN and NFV

Source: Cisco VNI Global IP Traffic Forecast, 2017–2022
Accelerating the Servers

• Bandwidth demands have significantly outgrown CPU performance
 – Virtualization adds to load on server CPUs
• Domain-specific accelerators offload processing from CPUs
 – SmartNICs, machine learning and inference coprocessors, security processors etc.
 – Increases application performance
 – Releases CPU cores for other revenue earning workloads
• Accelerators should integrate best-of-breed components
 – Processors, hardware engines, memory and I/O peripherals
Chiplets and SoC Development

• Chiplets are silicon die for subsystem components
 – Alternative to monolithic SoC design
 – Have been widely used where an SoC uses components developed on different silicon technology – eg. Analog + DSP or processor
 – Increasingly being used to provide modular solutions

• Most chiplets so far have been used in a closed development environment

• An open chiplet ecosystem will enable the wider use of chiplets and accelerate SoC development
Chiplet Use Cases

• AMD EPYC Processors
 – 7nm CPU chiplets (Zen 2)
 – 14 nm I/O die

• Marvell MoChi™
 – Smartphone application
 – CPU, GPU, application processor and DRAM on MCM
 – Connects to LTE Modem and WiFi modules

• High-Bandwidth Memory
 – 3D stacked memory with interposer and wide parallel standard interface
 – Offered by multiple memory manufacturers in volume production.
Open Domain-Specific Accelerator (ODSA) Workgroup

- Industry initiative driven by seven leading silicon companies
- Developing an open architecture for domain-specific accelerators
- Enables chiplet-based silicon design to be composed of best-of-breed components
 - Includes processors, accelerators, and memory and I/O peripherals
- Implementing open specifications contributed by participating companies
Audience Poll #1

- Is your company looking at domain-specific accelerators to meet your cost-performance goals?
 - Yes, and working on solutions now
 - Yes, and will need solutions within 1-2 years
 - Yes, will be required for future roadmap
 - No, this is new to us
Exponential Costs of Monolithic Silicon Development

- Designs are too costly at advanced nodes
- Impossible to justify for smaller markets
- Only the largest companies can afford
- Stymies domain-specific innovation
- Limits choice of components – both specialized and commodity/generic

Keith Flamm, Nov ‘17 (Measuring Moore’s Law; Evidence from Price, Cost & Quality Indices) Global Foundries, semiengineering.com (“How much will that chip cost?”)
How Does Performance Scale Post- Dennard & Moore’s Law?

Today’s problem:
- Dennard Scaling has ended
- Moore’s Law slows
- ILP (Instruction Level Parallelism) era finished
- Amdahl’s Law ends the “easy” multicore era

Today’s solution:
- Domain Specific Architectures & Languages
 - Optimize the architecture for domain characteristics
 - Requires more intimate knowledge than GP CPUs
 - Do less, but do it faster and more power efficiently
 - Programming model matches specific domain
Examples of Domain Specific Architecture Processors

• Tailor architecture to a domain
 – Devices - programmable, not hardwired
 – Integrated application and deployment-aware development of devices, firmware, systems, software
 – Domain-specific languages for ease of use

• Attributes of a Domain-Specific Architecture
 – Parallelized data processing
 – Function-specific logic
 – Application-aware data management
 – Application-aware flow control
Domain-Specific Silicon Delivers Higher Performance/Watt

Google TPU vs. CPU and GPU

Source: “An in-depth look at Google’s first Tensor Processing Unit (TPU)”, Google Cloud, May 2017

Netronome NFP vs. CPU and FPGA

Source: Netronome based on internal benchmarks and industry reports related to Xeon CPUs and Arria FPGAs
Open Architecture for Chiplets-Based Domain-Specific Accelerators

Switch Fabric interconnect the Logic Blocks inside the NFP device

Open chiplets connectivity specification
Reference Multi-Chiplet DSA Architecture

- Reference multi-die architecture for DSAs derived from monolithic and decomposed into individual chiplets:
 - A network I/O chiplet
 - A RISC CPU chiplet
 - A DSA chiplet which may be implemented as:
 - An FPGA
 - A many-core RISC processor
 - Domain-specific logic
 - A switching and interface chiplet to which all the other chiplets are connected
- These chiplets are now packaged together on a common substrate
- The chiplets will have to implement comm agents to support inter-die networking
Networking and Inferencing Package on Demo System

- LR SerDes
- Bridge
- NFP
- Arm RISC-V
- FPGA

To Host
- PCIe-3, 8 Lanes, 36 Wires
- What is the I/O Protocol? Maximum Number of Interconnections?
- PCIe-3, 8 Lanes, 36 Wires
- Networking Package
- Inferencing Package

LR SerDes - 112Gb/s XSR, 1Tb/s BW, 8 Lanes, 30-50 Wires

What are the I/O Protocols?
What is the Maximum Number of Interconnections for Each Protocol?
What is the Total Number of Interconnections?
Audience Poll #2

• What application would your company benefit most from using domain-specific accelerators?
 – AI and/or Machine Learning
 – Security
 – Edge computing
 – IoT
 – Storage/database acceleration
 – Other
What are the Technical and Business Challenges Related to Chiplets?

- Chiplet technology requires a different business model than that used for monolithic silicon IP

- HBM has been a business and technical proof point for multi-die integration
 - Multi-die test on a single laminate
 - Multi-party yield analysis/contributions
 - Thermal/mechanical modeling and reliability
 - Interface interoperability

- Production lifetimes and test are a key consideration
 - Commitments to production, backward compatibility of follow-on chiplets
 - Technical approaches can minimize impact of changes (Chip-Scale Packages, etc)
 - Standards-based approaches a must

Avera Semi HBM Integration
Near reticle size die
Example Business Model

- ASIC provider integrates multiple die or CSP on a substrate

- Sourcing from chiplet providers
 - Purchasing and/or consignment models need to be established by opportunity
 - Ideally standardized
Challenges Being Addressed in ODSA

- Where necessary, extensions to standards
- Adoption of appropriate open IPR licensing model
- Interface IP Agnostic Transaction Layer
- Chiplet-to-chiplet assembly and test
- Business models to enable chiplets
- Ecosystem of interface providers
- Ecosystem of chiplet providers
- Ecosystem of integrated ASIC providers
Democratize Advanced SoC Designs For Domain-Specific Accelerators: Call for Industry Collaboration

- The Open Domain-Specific Accelerator (ODSA) Workgroup is open to all companies wishing to participate
- Goal: any vendor’s silicon die as a building block that can be utilized in a chiplet-based SoC design
- Implementing open specifications contributed by participating companies
- Enable use of processors, accelerators, and memory and I/O peripherals using optimal process nodes
- Email us for more information: info@odsachiplets.org
ODSA Workshop – January 29, 2019

• Join us to learn how you can participate in ODSA as well as meet industry experts that are contributing to the workgroup:
 – Business issues the ODSA solves
 – Technical issues the ODSA solves
 – Plans to build a PoC with the ODSA architecture
 – What open source organization will the ODSA live?
 – What are steps moving forward?

For more information visit: https://netronome.regfox.com/odsa-workshop

• Location:
 GLOBALFOUNDRIES Headquarters
 2600 Great America Way, Santa Clara, CA
Questions and Answers?

Moderator
Simon Stanley
Analyst at Large
Heavy Reading

Jim Finnegan
Chief Operating Officer and
Senior Vice President of
Silicon Engineering
Netronome

Mark Kuemerle
Fellow, Integrated Systems Architecture
Avera Semiconductor
(formerly GLOBALFOUNDRIES ASIC)
Thank you for attending!

Upcoming Light Reading Webinars

www.lightreading.com/webinars.asp